000 | 02250aab a2200289 i 4500 | ||
---|---|---|---|
001 | 1234 | ||
003 | UA-KpCNTU | ||
005 | 20250520151415.0 | ||
008 | 250303b un |||| |||| 00| 0 eng d | ||
040 |
_cЦНТУ _aUA-KpCNTU |
||
041 | _aeng | ||
100 | _aGoncharenko B. | ||
245 |
_aOptimal control of nonlinear stationary systems at infinite control time _h[Text] _c / B. Goncharenko, L. Vikhrova, M. Miroshnichenko |
||
260 |
_aКропивницький : _bЦНТУ, _c2021. |
||
300 | _aС. 88–93. | ||
490 |
_aЦентральноукраїнський науковий вісник. Технічні науки _vВип. 4(35) |
||
500 | _aThe article presents a solution to the problem of control synthesis for dynamical systems described by linear differential equations that function in accordance with the integral-quadratic quality criterion under uncertainty. External perturbations, errors and initial conditions belong to a certain set of uncertainties. Therefore, the problem of finding the optimal control in the form of feedback on the output of the object is presented in the form of a minimum problem of optimal control under uncertainty. The problem of finding the optimal control and initial state, which maximizes the quality criterion, is considered in the framework of the optimization problem, which is solved by the method of Lagrange multipliers after the introduction of the auxiliary scalar function - Hamiltonian. The case of a stationary system on an infinite period of time is considered. The formulas that can be used for calculations are given for the first and second variations. | ||
653 | _aminimax control | ||
653 | _arobustness | ||
653 | _asystems with uncertainties | ||
700 | _aVikhrova L. | ||
700 | _aMiroshnichenko M. | ||
773 | 0 |
_tЦентральноукраїнський науковий вісник. Технічні науки. Вип. 4/35 _w687 _dКропивницький : ЦНТУ, 2021 _x2664-262X |
|
856 |
_uhttps://dspace.kntu.kr.ua/handle/123456789/11381 _yРепозитарій Центральноукраїнського національного технічного університету |
||
942 |
_2udc _cIR _n0 |
||
999 |
_c1234 _d1234 |