000 02250aab a2200289 i 4500
001 1234
003 UA-KpCNTU
005 20250520151415.0
008 250303b un |||| |||| 00| 0 eng d
040 _cЦНТУ
_aUA-KpCNTU
041 _aeng
100 _aGoncharenko B.
245 _aOptimal control of nonlinear stationary systems at infinite control time
_h[Text]
_c / B. Goncharenko, L. Vikhrova, M. Miroshnichenko
260 _aКропивницький :
_bЦНТУ,
_c2021.
300 _aС. 88–93.
490 _aЦентральноукраїнський науковий вісник. Технічні науки
_vВип. 4(35)
500 _aThe article presents a solution to the problem of control synthesis for dynamical systems described by linear differential equations that function in accordance with the integral-quadratic quality criterion under uncertainty. External perturbations, errors and initial conditions belong to a certain set of uncertainties. Therefore, the problem of finding the optimal control in the form of feedback on the output of the object is presented in the form of a minimum problem of optimal control under uncertainty. The problem of finding the optimal control and initial state, which maximizes the quality criterion, is considered in the framework of the optimization problem, which is solved by the method of Lagrange multipliers after the introduction of the auxiliary scalar function - Hamiltonian. The case of a stationary system on an infinite period of time is considered. The formulas that can be used for calculations are given for the first and second variations.
653 _aminimax control
653 _arobustness
653 _asystems with uncertainties
700 _aVikhrova L.
700 _aMiroshnichenko M.
773 0 _tЦентральноукраїнський науковий вісник. Технічні науки. Вип. 4/35
_w687
_dКропивницький : ЦНТУ, 2021
_x2664-262X
856 _uhttps://dspace.kntu.kr.ua/handle/123456789/11381
_yРепозитарій Центральноукраїнського національного технічного університету
942 _2udc
_cIR
_n0
999 _c1234
_d1234